Evaluation of Dedekind sums, Eisenstein cocycles, and special values of L-functions
نویسندگان
چکیده
منابع مشابه
Evaluation of Dedekind Sums, Eisenstein Cocycles, and Special Values of L-functions
We define certain higher-dimensional Dedekind sums that generalize the classical Dedekind-Rademacher sums, and show how to compute them effectively using a generalization of the continued-fraction algorithm. We present two applications. First, we show how to express special values of partial zeta functions associated to totally real number fields in terms of these sums via the Eisenstein cocycl...
متن کاملDedekind Sums and Values of L-functions at Positive Integers
In this paper, we study Dedekind sums and we connect them to the mean values of Dirichlet L-functions. For this, we introduce and investigate higher order dimensional Dedekind-Rademacher sums given by the expression Sd( −→ a0 , −→ m0) = 1 a0 0 a0−1 ∑
متن کاملPeriods and Special Values of L-functions
Introduction 1 1. Modular forms, congruences and the adjoint L-function 2 2. Quaternion algebras and the Jacquet-Langlands correspondence 6 3. Integral period relations for quaternion algebras over Q 8 4. The theta correspondence 12 5. Arithmetic of the Shimizu lift and Waldspurger’s formula 16 6. Hilbert modular forms, Shimura’s conjecture and a refined version 19 7. Unitary groups and Harris’...
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولGenerating functions and generalized Dedekind sums
We study sums of the form ∑ ζ R(ζ), where R is a rational function and the sum is over all nth roots of unity ζ (often with ζ = 1 excluded). We call these generalized Dedekind sums, since the most well-known sums of this form are Dedekind sums. We discuss three methods for evaluating such sums: The method of factorization applies if we have an explicit formula for ∏ ζ(1− xR(ζ)). Multisection ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Duke Mathematical Journal
سال: 2003
ISSN: 0012-7094
DOI: 10.1215/s0012-7094-03-11822-0